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Abstract-The main features of contact problems of elastic beams are e~plored by considering a
specific equilibrium problem of a beam in contact with a smooth rigid flat surface. Solutions of four
separate line,lr theories. namely a general theory (G) and three others whieh are constructed as
constrained theories are considered. These constrained theories differ from the general theory only
by the degree of e~dusion of one or both types of deformation usually referred to as (a) transverse
normal strain and (b) transverse shear deformation. Thus. with both (a) and (b) absent. the
constr,lined theory~.corresponds to the RernoulliEuler beam theory (BE): with only (b) absent. the
constrained theory (N) accounts I'(,r normal e~tensional deformation; and with only (a) absent. the
constrained thel'ry corresponds to the Timoshenko beam thel'ry (T). Comparison of the predictions
of the solutions of the three constrained theMies with that of theory G shows that thel'ry N contilins
the main physics of the contact prohlcm and correctly predicts the conditions under which the beilm
loses clllltact. Also the contact force is cl'ntinuous at the end points of the contact region. In
contrast. neither of the other two constrained theories (BE or T) cl'rrectly predicts these features.

I. INTRODUCTION

The content of this paper bears on the nature of contact problems of clastic beams.
formulated here via a direct approach and in Ihe context of a linearized equilibrium theory
of beams with small deformation. In particular. for an isotropic. homogeneous, clastic
beam of rectangular cross section unda the action of applied bending moments at its end
points. the evolution of cont.tct region(s) on the lower surface of the beam in contact with
a smooth rigid surl~tce is explored as a result of an increase in the value of the applied
moment. t This study is pursued by a direct approach in the theory of rods based on a
modc/. known as a Cosserat (or directed) curve comprising a space curve and two directors
representing the cross section of the rod. Although this modd is three-dimensional in
character. the basic equations which result from it depend only on one coordinate variable
along the space curve. General background information on the direct formulation of the
non-linear theories of rods can be found in Green el £II. (1974b) and Naghdi (1982). In the
present context. the two directors model the deformation of the material fibers (surrounding
the space curve). which in the reference configuration of the rod are normal to the space
curve and also orthogonal to each other. In the general non-linear theory of rods based on
a Cosserat curve just described. the directors (or fibers) may experience three types of
deformation as discussed recently (Naghdi and Rubin. 1984): (a) normal cross-sectional
extension (or normal extension for brevity), (b) tangential shear deformation (or "transverse
shear deformation"). and (c) normal cross-sectional shear deformation.

Often. some of the details provided by the general theory are not needed for the
solution of a particular problem and it may be sufficient to use a simpler constrained theory
which excludes one or more of deformations (a}-(c) mentioned above. A hierarchy ofseven
constrained theories is discussed in Naghdi and Rubin (1984). In the present paper. we are

t Additional sheilr forces must necessarily be applied to these end points in order to maintain their vertical
positions when the beilm is contacted.
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Fig. I. A sh'n:h (If a b.::tm un.Jer Ihe ,lclinn Qf a b.:m.liIlg momcm\{ ~h(,winj:!one h,llf of Ih.: ~am
along 0'; :: ~ L ilnd showing (untOld region II and fr~'C regions I and III.

concerned with a straight. homogeneous. isotropic elastic beam of rectangular cross section
undergoing planar motion without torsion. Consequclltly. we only need to consider the
following thrce constrained theories: Constraincd theory 1. which excludes all three types
of defonnations (a)-(c) and corresponds to the Bernoulli-Eukr beam theory; Constrained
theory IV. which ex.c1udes deformations (b) and (c) but indudcs normal extension: and
Constrained theory V. which excludes deformations (1.1) and (e) but includes the transverse
shear deformation, and corresponds to the Timoshcnko beam theory. For convenience.
throughout the p~lper. we rdt:r to the lincariz;;d version of the general (unconstrained)
theory by G and to the lincariJ"cd versions of each of the constrained theories t IV. and V
by BE. N. and T. respectively. For Iat~r rcli:rent.,:e. we include here the following.

Statement al the prohkm. Conskkr an clastic heam of n:l.:tangular cross scctlon. parts
of the lower surface of which may he In contact with a s11100th stationary rigid nat surt~lce.

Let thc oeam bc referred to a fixed system or rectangular Cartesian eoordinatcs Xl ""

(x.y.;) with associated OrlhOlHlrIllUI has\: wclors (,', (i 0= 1.1, .1) and dlOose the origin of
the 1.:tlordinatc system at the center or the beam with the :-axis dirc.:tcd to the right (Fig.
J), In its rdi:rence contiguratilll1. th\.': heam is 1101110gcnellus and b;1.HfOpic and is (If length
2L in the ;-dircction. of height It in the x-direction and width w in the y-direction. The ends
of the beam located at (x,y,;) "" (0. o. ± L): (i) arc free to movc in the :-direction. (ii) arc
fixed at an arbitrary height x ::: r.L +h/1 with i: being a non-dimensional parameter much
less than I-ahove the rigid surf,u.:e. (iii) arc restrained from moving in the y-dircction and
(iv) arc subjected to a bending moment M in the ±y-dircctions. The lateral surfw..-cs of the
beam arc traction fn:e ex(,;cpt at points. or regions of contact with the rigid surface. The
clrcet of body force is neglected tlnd for simplidty the centcr of the beam is regardcd to be
restrained from moving in the :·dircction. The problem just (kscrihcd is symmetric about
the x-axis in the x-: plane as sketched in Fig. I.

In the ~malysis that follows. we observe that as the momc.:nt AI increases from zero. the
hcum bends until AI eqllals ~I critical value M* when the heam /irst cont<tcts the rigid surface
at its center: = O. x = - 11/2. For values of J[ larger than AI* and less than a second
critical value itt** the contact region includes the center of the beam and extends over the
region:: = ± L I' For values of Jf larger than M .... the center of the beam loses contact and
the contact region $cparates into the two regions - /., < : < - L 1 anu L 1 < ; < L l (Fige
I). Considering only the positive half of the beam (.: > 0,. we refcr to thcse thr\..'C cases as;
no contact (M < ,\{*); contact with one free regilm (M* ~ M ~ ,\{**); and contact with
two free regions (M > MU), It may be notcd that the analysis of separation of the contact
region is relevant to the dcsign of sockets for electrical devices because it ean 'iignificantly
inOucnce the ability of a con\al;'t spring to maintain a good clcctrical connection.

Essenburg (1975) was the first to recognize the signiflcance of including the effect of
transverse normal strain in u simibr contact problem. Starting from the three-dimensional
cqtl:ltions and using an approximation procc{iure. Essenhurg considered a slightly different
problem of a ~am with pinned ends .tnU assumed a form for the stress distribution which
satisfied bound,try conditions pointwise on the lateral surfaces of the beam and in integrated
form on the ends of the beam. and satisticd the equilibrium equations pointwise. He also
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assumed a displacement field which included quadratic dependence of the displacement on
the thickness coordinate x (in the notation of the present paper);t and, with the use of a
variational procedure (in the three-dimensional theory), related the displacements (and
their derivatives) to various stress resultants. The assumed form of the displacement field
in Essenburg's paper includes the effects of both transverse normal extension and transverse
shear deformation. In this regard, we may note that the general theory ofa Cosserat surface
(G) includes both the effects of normal extension and transverse shear deformation with
displacements which have only a linear dependence on x. Consequently, in the context of
the direct approach, the displacement field used by Essenburg (1975) corresponds to one
associated with a more general direct theory (with more than two directors) than that used
in the present paper.

In his paper. Essenburg (1975) showed that multiple contact regions can occur when
the bending moment is increased in the manner described earlier (see the paragraph
following the Statement of the prohlem). The validity of this result can be easily verified by
a simple demonstration. To elaborate. consider two thin metal strips and separate them at
each of their ends by bolts. Then. by using one's fingers to press the metal strips together
on each of their ends just inside the bolts. it is possible to establish contact at the center of
the strips and then cause separation there; this separation can be easily detected by observing
that light passes between the strips. In the present paper. it is shown that for prediction of
the loss of contact as described above it is necessary to include the normal extension effect
and it is sutlicient to use constrained theory N which isolates this elfect. This result is
intimately related to the Poisson effect and can be explained physically along the following
lines. Thus. with reference 10 Fig. I. we note that in a contact region the nonnal fibers (in
the x-direction) ncar the bottom surnlce of the beam arc compressed so axiallibcrs (in the
:-direction) arc extended due to the Poisson ellect. Furthermore. since the top surface of
the beam is tr'letian free. the resultant axial load vanishes and the axial fibers there arc not
extended. It follows that this preferential extension of the axial fibers ncar the bottom
surface of the beam (relative to its top surface) tends 10 create a curvature concave upward
in the contact region. As the moment is increased the location of the maximum contact
force per unit length in the positive half (: > 0) of the beam moves away from the beam's
center (: = 0). Consequently. the tendency to create a concave upward curvature in the
contact region is more signilicant near the location of the maximum contact force per unit
length than near the beam's center, thereby causing the center of the beam to lose contact.

After some preliminary background information. the basic equutions and constitutive
equations of the general linearized theory G. along with the m'lin feutures of the linear
constrained theories BE. Nand T. arc summarized in Section 2. A detailed solution of the
boundary-value problem described earlier in this section is obtained with the use of theory
G in Section 3. The corresponding solutions with the use of the three constrained theories
BE. Nand T can be obtained similarly and arc not recorded here. However, the results
from all four solutions are discussed in Sel:tion 4 us illustrated ulso in Figs 2(u). (b) and 3.
Basically. it is observed in Section 4 that the main physil:s of the contact problem are
contuined in theory N, which excludes the: ellect of transverse shear deformation but
includes normal extension. Qualitatively. it predicts the same results as general theory G.
In particular, it is found that the center of the beam loses contact for values of M > M**
and the contact lllrce between the beam and the rigid surface is continuous at the edges
of the contact region. whereas theories BE and T do not correctly predict these leatures.

2. GENERAL HACKGROUND AND BASIC EQUATIONS

In this section we first provide brief background information on the non-linear theory
of a Cosserat (or directed) curve with two directors Hnd then summarize the main aspects
of the linearized theory for a straight beam. along with linearized versions of the constrained
theories mentioned in Section I (Naghdi and Rubin. 1984). A detailed discussion of the
main kinematics and basic field equations of the theory of a Cosserat (or directed) curve

tThe coordinates (x.}'. =) of the present paper correspond to (=. -y.x) in Essenburg (/975).
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Fig. 2(a). Plots of the normalized location f I = L I L of the outer edge of the contact region as a
function of the normalized moment ,\1 predicted by the general theory (G). by the theory (N) which
accounts for normal e~tensional deformation. by the Tinw,henko beam theory (T) ami by Ihe
Bernoulli Euler beam theory (BE). Note that Fig. 2(a) represents an enlargement of a pllrtion of

Fig.2(b).
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Fig. 2(h). Plots of the normali/ed locations [, = L ,L of the outer edge of lhe contact region and
[, == L,jL of the inner edge of the contact region as functions of the normalized moment ,Ii

predicled by all four lhcorics (G. N. T and BEl.

.'1J which also modds the deformation (and motion) of a linear d'lstic, homogeneous,
isotropic straight beam may be found in Green et al. (1974a,b) and Naghdi (19X2). There
are some changes in the notations used in these papers and those of earlier ones on the
subject. However, throughout this paper. we consistently use the notation of Naghdi (1982)
and Naghdi and Rubin (1984) to which frequent references arc made for conciseness.

Let the particles (material points) of the material curve 2) of ;11 be identified by
convected coordinate ~; and. in the current configuration at time t. denote by rand d,
(,; = 1,2), respectively. the position vector of the material point and the directors at r. The
directors d I and d~ represent the material fibers which in the reference configuration are
parallel to the directions c\ and c~ of the orthonormal basis c, introduced in Section I. For
convenience. we introduce the notations
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Fig. 3. Plots of ii,!(M/U) representing the normalized contact force ii, per unit length over the
contact region for three different values of the normalized moment Sf as predicted by the three
theories (G. Nand T). The corresponding prediction by theory BE is not shown because the

Bernoulli-Euler beam theory cannot predict this type of information.

(I)

and note that eqn (1)2 represents the tangent vector to curve :" in the current configuration.
Further, the three vectors d, <lre <lssumed to be linearly indcpendent, i.e. [dld~dll > O.

Preparatory to the linearization of the various eq uations in the non-Iincar theory. lct
u and S, denote. respectively. the relative displacement of the material point ~ and the
relative director displacements at r defined by

r = R+u,

whcret

u = u(e, f),

(2)

(3)

and where R, 0, are the reference values of r, d, specified by

R=~cJ' O,=c,. (4)

All vector and tensor entities in this paper will be consistently referred to the base vectors
0, = (Clte2,C), Thus, for example

U = ",Ci , (5)

where the usual summation convention over repeated indices is employed. Using the
notation of Naghdi and Rubin (1984), the linearized strain measures '1ij' ".i are defined here
by

t We use the symbol&, (rather than 6, without an overbar) to avoid possible confusion between the components
5.1 of 8, (see eqn (5):) with the usual notation for Kronecker delta representing the components of the unit
tensor.
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(6)

We also note that in the context of the constrained theories of rods (Naghdi and Rubin.
1984). the componentst n, of the contact force n per unit length of the curve 2'. the
components k,; of the instrinsic director force k, per unit length of !f'. and the components
m,i of the contact force m, per unit length of !f'. are determined to within additive constraint
response such that

(n.k,.m) = (n.k,.ril,)+(n.k,.ril,). (7)

In eqn (7). the parts (n. k"rn,) require constitutive equations and the other parts
(ii, k,. ril,) representing the constraint responses are workless and are determined by the
equations of motion and the boundary conditions.

At this point, we may recall that the theory of a Cosserat curve can be brought into a
one-to-one correspondence with that derived by approximation from the three-dimensional
theory if the position vector r* and the relative displacement u* (in the three-dimensional
theory) of an arbitrary point in the beam arc linear functions of the convected coordinates
if defining the cross section of the beam such that (Green £'1 al., 1974a)

r* = r*(lr.~. I) = r(~./)+(},d,(~. t)

with

u* = u*(O',~. t) = u(~. I)+(}';>,(~. I).

The ranges of the coordinates ()' defining the rectangular cross section of the beam arc

(X)

( 10)

where UI = h/2 dclines the top surl~tce and (}I = -11/2 dclines the bottom surface of the
beam (Fig. I). It follows from e4ns (9) and (10) that the displacements u and u on the
centerlines of the top and bOllom surfaces. respectively. arc given by

. (") ..u=u+ 2 ()I, ( I I)

As in the paper of Green cl al. (1974a). the components of (n. k" m,) may be identified
with definitions of corresponding resultants which occur in the derivation of equations of
equilibrium (or motion) from the three-dimensional equations; and, similarly. most of the
constitutive coellicients in the direct approach may also be identified with the heIp of results
obtained from the three-dimensional theory (Green £'1 al., 1974a,b; Naghdi. 1982).

In what follows, we directly quote from the results for the linearized theory of straight
beams of isotropic materials from Green el al. (1974b), apart from some minor notational
changes. In this connection, we note that (i) now;. in Green £'1 al. (1974a.b) and in Naghdi
and Rubin (1984) is e4ual to the mass density per unit length of the beam. (ii) the strain
measure Y'J in eqn (7.38) of Green el al. (I974b) is twice that defined by eqn (6) I of the
present paper, and (iii) the constant constitutive coefficients k I•.••• k 17 in Green £'1 al.
(1974b) arc denoted in the present paper by :%1." '.:%17 to avoid possible confusion which
may arise from the slight change in the definition of strains.

It should be clear from the Stalemenl of Ihe prohlcm in Section I (sec also Fig. I) that
the type of deformation under consideration and characterized by eqns (5) must ensure

t Since in the linear theory all tensor quantities may be referred to the constant orthonormal base vectors
D, = e" there is 11" need to distinguish between covariant and contravariant components.
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that: (i) the centerline !l' must always remain in the e I-eJ plane. (ii) all cross-sectional fibers
which were originally in the e,-e3 plane must remain in the e,-e3 plane, and (iii) cross­
sectional fibers originally parallel to the e~-direction remain parallel to the e2-direction but
are allowed to extend. In order to reflect these properties, we impose the following restric­
tions on the relative displacement u and relative director displacements I, :

u·e;=O.

1~·el=O.

I, 'e~ = 0

1~'eJ = o.
(l2a.b)

(12c,d)

Demanded by the symmetry of the problem defined in Section I. the relevant constitutive
equations for the isotropic beam under discussion are

• ill1 05\, ilt, iJ511,,,,, = --_. __.+_._--_.
•• 0= 2=

• /Xll> 0513
m \3 = --tf::-

(13a)

(l3b)

(l3c)

(l3d)

(13e)

(l3f)

(l3g)

where in eqns (13) and in the remainder of the paper we have replaced the variable eby =
of rectangular Cartesian coordinates introduced in Section l.

Recalling from eqns (2.22) of Green et al. (1974a) that the assigned fields f and I'
include contributions of both the three-dimensional body force and surface tractions on
the lateral surfaces of the beam. then using eqns (12) and (13) and in the absence of the
etfect of the body force, the relevant equations ofequilibrium (see eqns (2.7)-(2.9) ofNaghdi
and Rubin (1984» for our present purpose may be displayed as

(l4a)

(14b)

(14c)

(14d)

(14e)
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(14f)

In the above equations of equilibrium for beams. eqns (I~a) and (I~b) are consequences of
linear momentum. eqns (14c)-( 14e) are consequences of director momentum and eqn (14f)
arises from the moment of momentum. Also. qI and ch are components of the applied force
per unit length at the top surface (x = h/2) of the beam. while ij I and ij J are the components
of the applied force per unit length at the bottom surface (x = - h2) of the beam. Depend­
ing on whether or not constraints are imposed on the directors we can discuss four types
of theories: we refer to these as the general theory (G). the Bernoulli-Euler theory (BE),
the normal extensional theory (N). and the Timoshenko beam theory (T). A feature which
is common to all four theories is that the component n l is determined by eqn (l4f) and
does not require a constitutive equation.t Moreover. the constraint responses nJ and nlxi

vanish (for details see Naghdi and Rubin (1984» so that

m" = ,il". (15)

Before proceeding further. it is desirable to indicate briefly the structure of these
theories which may be described as follows.

GeT/eral t!leory (G). For the general theory. there arc no constraints and in the
absence of constraint responses. the deformation fields in terms of the components
(UI.Ilj,C)IIoC)lhC)d arc determined by all five differential equations. eqns (14a)--(14c) with
kll = k 11 = k l1 = O. while cqn (140 determines n l (as was noted above).

Constrained t!leory (HE). This theory excludes both normal extensional and transverse
shear deformation by imposing the kinematical constraints

"II = 0, "II = o. ( 16)

The relevant system of governing equations in this case simplifies considerably: the defor­
mation fields (Ill. Ill) are determined by the two differential ell uations. eqns (14a) and (140),
while the remaining three equations. eqns (14c)-( 14e) determine the constraint responses
k ll .k11,1(IJ'

Constrained theory (N). This theory includes normal extensional deformation. but
excludes transverse shear deformation by imposing only constraint (l6h. The deformation
fields (Ill. Il J, C)II, 511) in this case arc determined by the four differential equations, eqns
(14a)-(14d) with k ll = k 11 = O. while eqn (14e) may be regarded as an equation for the
determination of the constraint response k 1).

Constrained t!leory (T). This theory includes the effect of transverse shear deformation
but excludes normal extension by imposing constraints (16)1.1' The deformation fields
(u lo Il). 51 J) in this case are determined by the three differential equations, eqns (14a), (14b)
and (14e) with k l ) = 0, while eqns (14c) and (14d) determine the constraint responses k ll

and kH .

Most of the constitutive coefficients which occur in the direct formulation of the theory
of elastic rods have already been identified in the paper of Grecn et al. (I974b). Apart from
some notational changes and a slight change in the definition for i"1 mentioned earlier. these
coefficients are given by

\':X 1
:X7 = :Xx = :X'l = ------

. (I - \,)

(17)

( 18)

t This is consistent with a general procedure in continuum mechanics according to which moment of momentum
equation is regarded to be satisfied identically hy all field quantities in the theory_



and

Significancc of normal cross-sectional clItension in beam theory :257

5
~() = -f.lhw

6
(\ 9)

where E is Young's modulus ofelasticity, v is Poisson's ratio and f.l = E/2( 1+ ,,) is the shear
modulus. The coefficients in eqns (17) and (18) were identified in Green et al. (1974b) by
comparison with exact solutions in the three-dimensional theory for simple extensional
deformation of a rod in the c 1- and e3-directions, while eqn (19)1 was identified by com­
parison with the exact solution for pure bending of a beam. The coefficient :x o is associated
with the effect of transverse shear and its approximate value, as recorded in eqn (19);. is
commonly used in the literature for static solutions which include the effect of transverse
shear deformation. The remaining coefficients in the constitutive equations. eqns (13),
namely :XII), ~ II' :x 11 which occur in eqns (13e) and (13f), have not been identified so far by
comparison from exact solutions in the three-dimensional theory. However, since the main
physics of the contact problem is retained even in the absence of these coefficients, we set

(20)

which also leads to a considerable simplification of the system of equations governing the
contact problem under discussion. It is of interest to note that specification (20) is
tantamount to a special constitutive assumption which renders the strain energy density
function independent of kinematical quantities 1\ II and I\~!.

Specifications (17)-(20) are valid for constrained theory N whidl includes normal
ell tensional deformation. However, for constrained theories BE and Twhich exclude normal
extensional deformation we must specify ct.1 by

:X.l = EliII' (21 )

in order to obtain the correct results for simple tension in the C J-direction. In this reganJ
we may note that when the lateral surfaces of the beam .tn: traction free, the flexural and
extensional equations are decoupled. However, when the contact forces (e.g. ti 10 ti3) arc
present, the flexural and extensional equations arc coupled (see eqn (14a». The value (21)
is included for completeness even though it is not needed for the solutions presented here
because the flexural and extensional equations of theories BE and T remain uncoupled.

Recalling the Statement 01the prohlem in Section I, for the contact under consideration,
the top surface of the beam is free of contact force (ti I = ti3 = 0), the contact surface is
smooth (iiI = 0) and the ends:: = ± L arc allowed to extend freely in the crdirection since
"J = O. With the help of eqns (13) and (20), the governing equations, eqns (14), reduce to

,. (~ ~ ct 9 dU 3)
K" = - ~1<>11 +~,J,,+ ---- ..- d=

(22a)

(22b)

(22c)

(22d)

(22e)
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(22f)

2.1. Solution procedure
The analysis of the contact problem with the use of general theory G naturally leads

to the consideration of three separate regions: (i) the free region I. (ii) the contact region
II. and (iii) the free region III (Fig. 1). Thus. we first consider the general solutions in each
of these three regions and then impose appropriate boundary conditions at the end:: = L,
symmetry conditions at the center. and matching conditions at the boundaries:: = L 1 and

L 1•

Specifically. the boundary conditions at the end:: = L are

III (L) = O. (23a~)

and the symmetry conditions arc

lid::) lid -::). lil(O) ::;;; O. J l1 (::)::;;; -J IJ ( -::)

J II (::) J'I(-::)' J,,(::) = ()d ::).

J7urthermore. the matching conditions at :: = L I arc

IldL I ) ::;;; 1l,(Lt). 11\(['1) = 1l\(Lt). 5,\(L , ) = 51J(Li)

SII(l.l'>::;;; />II(Ln. /),1(1-1) = /)'l(Lt)

tI, (I~ I ) ::;;; til (I.n. til (1'1 ) ::;;; tI d Ln
11/ 1 1(L, ) ::;;; 11/ I I (L t ). (/1 (I-I ) ::;;; (/, (L t )::;;; 0

Ii I (I. I ) ::;;; Ii dL t ) ::;;; - d.

and the matching conditions at :: = 1.2 are

11,(1., )::;;; III (I.!). 1i,(L, )::;;; Ii,(l.!). (>l1(L~)::;;;51J(Li)

511 (1. 2 ) ::;;; 511 (LJ). i>dL 1 ) ::;;; In(Li)

fl l {L 2 )::;;; tll{L!), flJ(L,)::;;; fl1{Ll)

m'I{L,) = m 11 {Ln. iiI (L 1 ) ::;;; lidL;) ::;;; 0

lidL;) ::;;; til(L!) ::;;; -1;[.

(24a-c)

(24d,e)

(25a-c)

(25d.e)

(25f,g)

(25h,i)

(25j)

(26a~)

(26d,e)

(26f,g)

(26h,i)

(26j)

J7rom the constitutive equations. eqns (13). conditions (15), the equations of equi­
librium (22). as well as the conditions k" ::;;; 0, it follows that the kinematical quantities

dill dll J
()Ilo J~2 (27a-f)Ill' d::

u l •
d::

.

5".
dS l1 d1S, , d'51 ,

(27g-j)
d=l

_. . d=1d::

arc continuous at the boundaries:: = L I and I. ,. Further. it follows from (II) and (27) that
the kinematics of the top and bottom surfaces of the beam satisfy the conditions thatt

tThese conditions differ from those used by Essenhurg (1975). His matching conditions arc not sutlicientto
ensure the continuity of the displacement at the top surface of the beam.
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U,. UJ.
dUJ

d=

U,. t; J.
dUJ

d=
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(28a"",)

(28d-f)

are also continuous at the boundaries = = L 1 and L:. It is of interest to note that the
quantities du,/d= and dt;,/d= are not necessarily continuous because the quantities db,,/d=
and dbnfd= are not necessarily continuous. However. if we were to consider a theory in
which :x I o. 1% II. :x 17 were not assumed to vanish. then we would require continuity of mil

and m:: at the boundaries = = L, and L:. This would then require continuity of db"/d=.
dbzz/d=. dudd= and du,/d=. but this is not considered here.

It is fairly straightforward to show that constrained theory N satisfies the same con­
tinuity requirements as general theory G. whereas constrained theories T and BE do not.
More specifically. dJ~IJ/d=J (or iii) is not continuous for constrained theory T and both
dJb,J/d=J and d1Ju/d=: (or (/, and ,it) are not continuous for constrained theory BE.

3. SOLUTION-GENERAL THEORY (Gl

In this section we first obtain general solutions in the three regions. regions I-III. and
then develop the solution of the contact problem for the three cases: no contact (M < M*);
contact with one free region (A[* ~ A[ ~ /1'[**); and contact with two free regions
(M> M**).

For the general theory there arc no constraints and this is equivalent to setting

(29)

Also. since the ends of the beam are free of axial force (/I, = 0), and by eqns (25g) and
(26g) the axial force must be continuous. we conclude that the constant in eqn (22b) vanishes
so that

(30)

Further. using eqns (29) and (30). eqns (22a) and (22c)-(22e) may be rewrilten in the forms

(3Ia)

(31 b)

(3lc)

(3Id)

where the constant 0: in eqns (31 b) and (31c) is defined by

(32)

Free region I. For free region I the contact force ii, vanishes and the solution of eqns
(30) and (31) subject to boundary conditions (23) and matching condition (25j) yields
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III = - (2~~J (L -;;)(;- Ld- E(~(:~~: - (;1) (L-;;)(;-Ld(2L- L I -;) (33a)

II} = as, J'1 = 0, Joo = 0 (33b-d)

.~ r.L ( At) [ 2(L-Ld
O

2:x 16J
()13 = - ~--_ .. + ---- (L+L I -2;;)+a l (;-Ld(;+L I -2L)+· +-----

(L-L\) 2:X'6 3 :X6

(33e)

n, = 2:X1 6a" n} = 0, ii, = 0 (33f-h)

(33i)

where al and as are constants of integration.
Cotllact region [[ . For contact region II the normal displacement at the contact surface

is (Fig. I)

(34)

DilTen:ntiating eqn (31 h) with respect to ;; and using eqns (Jld) and (34) to eliminatc 3"
and dUl/d;; we deduce the equation

whcre constants (/ and" arc dclined through

(35)

-I 4:x
(/ =, ,

,,-:x I (,
(36a,b)

Using standard techniqucs a general solution of eqn (35) may be written in the form

31 \ = "I cosh li,(;- LJ cosh #1(;-[1)+": sinh 1$1(;-L1) sin 1$1(;- L:)

+h 1 cosh fld;;-L 2) sin li1(;;-L:)+h~ sinh #,(:-L:) cos #2(:-L:) (37)

where hi, "1, b h b~ arc constants of integration to be determined and constants 1$1 and IJ 1

arc given by

Ii, = a cos U, (38a,b)

(38c)

The remaining part of the solution for region II in terms of eqns (37) and (22) may be
summarized as follows:

(39a)

(39b)

(39c)
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(39d)

(3ge.f)

(39g.h)

(39i)

where 51 J is given by eqn (37) and bs in eqn (39b) is another constant of integration.
Free region m. For free region III the contact force ii I vanishes and a solution of eqns

(30) and (31) subject to symmetry conditions (24) and matching condition (25j) yields

511 = O.

nl = 0,

u) = 0

nJ = 0, (II = 0

(40a.b)

(4Oc-e)

(40f-h)

(40i)

where Cz is a constant of integration.
So/ution --no contact. When there is no contact. the contact force iii vanishes and a

solution ofeqns (30) and (31) subject to boundary conditions (23) and symmetry conditions
(24) results in

( M) , ,
III = - ., ... (L--::-),

_IX 16
(4Ia,b)

n I = O. tl J =O.

mlJ = -M.

(4Ic--e)

(4If-h)

(4Ii)

We observe that contact will first occur at the center of the beam when UI(O) = -eL and
M = M* with M* given by

(42)

Solution (41) corresponds to that for pure bending of a beam. With the help of kinematical
expressions (6). (4Ia). and (4Ie). it can be readily demonstrated that the effect of transverse
shear is entirely absent in this case. consistent with the known exact three-dimensional
solution.

Solution-contact with one free region. The solution is characterized by eqns (33) in
region I and eqns (37)-(39) in region II. Since there is only one free region we set

(43)

and impose symmetry condition (24c) on the solution in region II to deduce that



262 P. M. N~GHDI and M. B. Rt:8IN

bl=bz=O. (44)

The remaining constants are determined by symmetry condition (24b) and matching con·
ditions (25b}--(25d), (25f) and (25h) and are given by

(45a.b)

bs = 0 (45c-e)

where the normalized moment /vI and constants A I. B). and B4 are defined by

_ ,~f

,'.f = (46a)
M'"

AI = n)[(f'i-{l})-284Ifr/J:.] cosh {JILl sin I1:.L I

+ (D[2!J I [J 2 + lJ4U'i - (n)! sinh {11 L I cos [J :.L I (46b)

8., = [2A[(L-L I)+(lJ4{'1 +!'2) cosh {JILl cos ('2LI

+U'I-lJ4 !'2)sinh!f IL I sin [J:.La) I (46c)

([J~-3!IUJ2) cosh {JILl cos {12LI -({n-3[JI!J~) sinh #IL I sin [J:.L 1B _. "'--"--'~--"""."""""-'-'-"'---"-----'-...-.-_..~...__.__ ._- - (46<1)
4 - ([n-3!J~{J:.) sinh !JILl sin [1 21. 1+([n-3[IIM) cosh #IL I cos #21. 1 '

For a given value of M larger than M"', eqn (45f) may be solved numerically to determine
the smallest positive value of L 1 for which the contact force til remains positive in region
II. When M reaches the critical values M"'*, then the contact force {il vanishes at the center
== O. the beam loses contact there and we must include region III in the analysis.

Solution-contact with two free regions. The solution is characterized by eqns (33) in
region I, eqns (37)-(39) in region [I, and eqns (40) in region III. For this problem matching
conditions (26b)-(26d), (26f) and (26h) at == L 2 yield

hs = O.

where constants 81> 8 2 and 8 4 are given by

8 =[([n-p~)JB
2 2P I fi 2 1

(47a-~)

(47d.e)

(48a,b)

(48c)

Using these results, matching conditions (25b}--(25d). (250 and (25h) at == L I yield
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(49a.b)

(49c)

;\-1 = L(L:' LJ)J[(~J)(B, cosh fJ ,(L,- L z) cos fJz(L,-L z)

+Bz sinh fJ,(L,-LJ sin fJz(L,-Lz)+cosh fJ,(L,-L z) sin fJz(L,-L:)

. {2(L-LY 2:I'6}) (L-L')J-I
+B~ smh fJI(L,-L z) cos fJz(L1-Lz)-A I 3 + -;;: + 2L (49d)

[(fJi - 3fJ 1fJ~) + B4(fJ~ - 3fJi fJz)] sinh fJ, (L 1 - L:) sin fJ z(L I - Lz)+[B 1(fJ~ - 3fJi fJ z)

+B:(pj-3fJlfJn] cosh fJ,(L1-L:) sin P2(L 1-L1)+[B1(pj-3fJIPD

- B:Un - 3fJUJz)] sinh {J 1(L 1 - L:) cos (J2(L 1- L 2) = 0 (4ge)

whcre Al is given by eqn (46a) and constants A, and BJ are given by

Al = O)[B,(f/~-I/~)+2Bdl,P:I cosh P,(L,-L2) cos P:(L,-Lz)

+O)[B:(f/i-p~)-28IP,PzJ sinh P,(l'I-L:) sin pz(L,-Lz)

+O)[({Ii - Il~) - 28 4 11 dl:\ cosh II,(L I - L:) sin /lz(L , - L z)

+O)[IJ4({Ji - InH 211dl:l sinh If I(L I - L:) cos P:(L , - L z) (SOu)

II \ = [2..1 ,(L - L .> +(8 4 III + (I:) cosh {I, (L I - L 2) cos II: (L, - L:)

+ (fll - 114112) sinh 11,(L1- L:) sin /l2(L 1- L 2)

+(8211, - 8.1/:) cosh If ,(L, - L 2) sin II:(L I - L:)

+ (B, II, +8:11:) sinh II, (L, - L z) cos pz(L I - L:W I. (SOb)

For a given value of M larger than M**, we guess values for L 1 and L: and iterate
until eqns (49d) and (4ge) are satisfied with iit being nonnegative in region II. Within the
context of the present solution the value of M** can be evaluated by specifying L z =0 and
using eqns (47), (48) and (4ge) to deduce that

(5Ia-<:)

(Sid)

The smallest non-trivial value of L, which satisfies eqn (SId) is

(52)

It then follows from eqns (46a). (49d). (50) and (51) that the value of M** becomes

AI" = /\,{*[__L__J [<L-.L I ) _ (B 3 ) (B . h n l +A {2(L-Lr>: ~:X'6})J-l
2(L-L,) 2L L 4Stn"I~' , 3 +:%6

(53)

where constants A 1 and BJ are given by

SAS 2';;1-D
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Al = -n)[B~(p~-{J~)+2PlfJ,l sinh fJIL I

B 1 = [2A I ( L - L I ) - ( B~ fJ 1 + f3,) cosh fJ I L d- I,

and where B~ is given by eqn (48c).

4. DISCUSSIO:--l

(54a)

(54b)

[n this section we discuss the predicted numerical results for a beam the geometry and
Poisson's ratio of which are specified by

Iz.- = 0 IL .,
I\'

L = 0.1. \' = 0.25. (55a-<:)

With the use of eqns (55), the solutions of general theory (G), the Bernoulli-Euler theory
(BE), the normal extensional theory (N), and the Timoshenko beam theory (T) were
obtained and the results are presented graphically in Figs 2 and 3. No values are specified
for the length L. the height r.L or Young's modulus E because all lengths are normalized
with respect to L and the moment is normalized with respect to the value M'" (the same
value predicted by all theories). Figure 2(a) represents a plot of the normalized length
L I = L Ii L as a function of the normalized moment ,".1 for the initial stages of contact. In
particular, notice that theory N exhibits the correct physics at the initial stages of contact
because it coincides with general theory G near "'I = I. Also, notice from Fig. 2(a) that
theory T predicts that contact begins at Al = I but has the incorrect slope there. Further­
more, theory BE predicts discontinuous behavior with no solution existing for "'I between
the vailles AI = I at which contact initiates and "'I = 3 when the contact region begins to
spread. Figure 2( b) represents a pint of the normalized lengths L I and L1 = L 11L for a
larger range of normalized moment "'I. Again, we observe from Fig. 2(b) that theory N
exhibits the correct physics by predicting a non-zero value of L1 whereas theories T and
BE predict a zero value for fl' Furthermore, we observe that for values of M larger than
abollt three. the values of L I predicted by theories Nand T are close to those predicted by
gencraltheory G but the predictions by theory BE have considerable error.

Figure 3 shows the distribution of the contact force {il (normalized by MI L ') for three
values of moment AI. The corresponding result for theory BE is not included in this figure
because it cannot predict the contact force. For 1\-1 = 3 all three theories (G. N. T) predict
a single free region; for "'I = 5 both theories G and T predict a single free region. whereas
theory N predicts two free regions. and for ,\-1 = 10 both theories G and N predict two free
regions, whereas theory T predicts a single contact region. For all cases theory T significantly
overestimates the maximum value of the contact force and incorrectly predicts that this
maximum occurs at the edge of the contact region where physically the contact force should
vanish. For the smallest value of i\1 in fig. 3. neither theory N which includes normal
extension nor theory T which includes the effect of transverse shear deformation accurately
predicts the distribution of the contact force. However. for the larger values of lJ it
becomes clear that normal extensional theory N is superior to theory T. Moreover. for
AI = 10. the effect of normal extension is significant ncar the outer edge (= = L I) of the
contact region. while the effect of transverse shear deformation is significant ncar the inner
edge of the contact region (= = L,).

Ackfl",d",lq'·n/"flt.,·-·The results reported here were ohtained in the course of research supported by the Solid
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