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Abstract—The main features of contact problems of ¢lastic beams are explored by considering a
specific equilibrium problem of a beam in contact with a smooth rigid flat surfuce. Solutions of four
sepacate linear theories, namely a gencral theory (G) and three others which are constructed as
coastrained theories are considered. These constrained theories differ from the general theory only
by the degree of exclusion of one or both types of deformation usually referred to as (a) transverse
normal strain and (b) transverse shear deformation. Thus, with both (a) and (b) absent, the
constrained theory corresponds to the Bernoulli-Euler beam theory (BE) : with only (b) absent, the
constrained theory (N) accounts for normal extensional deformation ; and with only (a) absent, the
constrained theory corresponds to the Timoshenko beam theory (T). Comparison of the predictions
of the solutions of the three constrained theories with that of theory G shows that theory N contains
the main physics of the contact problem and correctly predicts the conditions under which the beam
loses contact. Also the contact foree is continuous at the end points of the contact region. In
contrast, neither of the other two constramed theories (BE or T) correctly predicts these features.

I INTRODUCTION

The content of this paper bears on the nature of contact problems of clastic beams,
formulated here via a direct approach and in the context of a linearized equilibrium theory
of beams with small deformation. In particular, for an isotropic, homogeneous, clastic
beam of rectangular cross section under the action of applied bending moments at its end
points, the evolution of contact region(s) on the lower surface of the beam in contact with
a smooth rigid surfuce is explored as a result of an increase in the value of the applied
moment.t This study is pursued by a direct approach in the theory of rods based on a
model, known as a Cosserat (or directed) curve comprising i space curve and two directors
representing the cross section of the rod. Although this model is three-dimensional in
character, the basic equations which result from it depend only on one coordinate variable
along the space curve. General background information on the direct formulation of the
non-lincar theories of rods can be found in Green et al. (1974b) and Naghdi (1982). In the
present context, the two directors model the deformation of the material fibers (surrounding
the space curve), which in the reference configuration of the rod are normal to the space
curve and also orthogonal to cach other. In the general non-linear theory of rods based on
a Cosserat curve just described, the directors (or fibers) may experience three types of
deformation as discussed recently (Naghdi and Rubin, 1984): (a) normal cross-sectional
extension (or normal extension for brevity), (b) tangential shear deformation (or “transverse
shear deformation™), and (¢) normal cross-sectional shear deformation.

Often, some of the details provided by the general theory are not needed for the
solution of a particular problem and it may be sufficient to use a simpler constrained theory
which excludes one or more of deformations (a)-(c) mentioned above. A hierarchy of seven
constrained theories is discussed in Naghdi and Rubin (1984). In the present paper, we are

t Additional shear forces must necessarily be applied to these end points in order to maintain their vertical
positions when the beam is contacted.
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Fig. b A sketch of & beam under the action of a bending moment M showtng one half of the beam
atong 0 € & € L and showing contact region I and Iree regions Land 1L

concerned with a straight. homogeneous. isotropic elastic beam of rectangular cross section
undergoing planar motion without torsion. Consequently, we only need to consider the
following three constrained theories: Constrained theory I, which excludes all three types
of deformations (a)-(¢) and corresponds to the Bernoulli-Euler beam theory : Constrained
theory 1V, which excludes deformations (b) and (¢} but includes normal extension: and
Constrained theory V. which excludes deformations {a) and (¢} but includes the transverse
shear deformation. and corresponds te the Timoshenko beam theory. For convenicnce,
throughout the paper. we refer to the hncarized version of the general (unconstrained)
theory by G and to the lincarized versions of cuch of the constrained theores LIV, and V
by BE. N, and T. respectively. For fater reference, we include here the following.

Statement of the problem. Consider an clastic beam of rectangular cross section, parts
of the lower surfuce of which may be in contact with a smooth stationary rigid flat surface.
Let the beam be referred to a fixed system of rectangular Cartesian coordinates x, =
(v.y 2) with associated orthonormgl base vectors ¢, (6= 1.2, 3) and choose the origin of
the coordinate system at the center of the beam with the z-axis directed to the right (Fig.
1), In its reference configuration, the beam is homogencous and isotropic and is of length
2L in the z-direction, of height b in the v-direction and width w in the p-direction. The ends
of the beam located at (v, 1, 2) = (0,0, + L) (i) are frec to move in the o-direction, (i) are
fixed at an arbitrary height x = ¢L+ #/2 -with ¢ being a non-dimensional parameter much
fess than F—above the rigid surface, (i) are restrained from moving in the y-dircction and
(iv) are subjected to o bending moment M in the + y-directions. The lateral surfaces of the
beam are traction free except at points or regions of contact with the rigid surface. The
effect of body force is neglected and for simplicity the center of the beam is regarded to be
restrained from moving in the z-direction. The problem just described is symmetric about
the x-axis in the x-z plane as sketehed in Fig. 1.

In the analysis that follows, we observe that us the moment M increases from zero, the
beum bends until M equals a eritical value A/* when the beam first contacts the rigid surface
at its center 2 =0, x = —#/2, For values of M larger than M™ and less than a second
critical value M ** the contact region includes the center of the beam and extends over the
region = = + L,. For values of M larger than A7** the center of the beam loses contact and
the contact region separaltes into the two regions —L, <z < —L,and L, < < L, (Fig.
1). Considering only the positive hall’ of the beam {= > 0}, we refer to these three cases as:
no contact (A < AM*): contact with one free region (M* € M € M**); and contact with
two free regions (M > M **). Tt may be noted that the analysis of separation of the contact
region is relevant to the design of sockets for clectrical devices because it can significantly
influgnce the ability of a contuct spring to maintain a good clectrical connection.

Essenburg (1975} was the first to rccognize the significance of including the effect of
transverse normal strain in a similar contact problem. Starting from the three-dimensional
equations and using an approximation procedure, Essenburg considered a slightly different
probiem of a beam with pinned ends and assumed a form for the stress distribution which
satisfied boundary conditions pointwise on the lateral surfaces of the beam and in integrated
form on the ends of the beam, and satisficd the cquilibrium equations pointwise. He also
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assumed a displacement field which included quadratic dependence of the displacement on
the thickness coordinate x (in the notation of the present paper);t and, with the use of a
variational procedure (in the three-dimensional theory), related the displacements (and
their derivatives) to various stress resultants. The assumed form of the displacement field
in Essenburg’s paper includes the effects of both transverse normal extension and transverse
shear deformation. In this regard, we may note that the general theory of a Cosserat surface
(G) includes both the effects of normal extension and transverse shear deformation with
displacements which have only a linear dependence on x. Consequently, in the context of
the direct approach, the displacement field used by Essenburg (1975) corresponds to one
associated with a more general direct theory (with more than two directors) than that used
in the present paper.

In his paper, Essenburg (1975) showed that multiple contact regions can occur when
the bending moment is increased in the manner described earlier (see the paragraph
following the Sratement of the problemt). The validity of this result can be easily verified by
a simple demonstration. To elaborate, consider two thin metal strips and separate them at
each of their ends by bolts. Then. by using one’s fingers to press the metal strips together
on each of their ends just inside the bolts. it is possible to establish contact at the center of
the strips and then cause separation there ; this separation can be easily detected by observing
that light passes between the strips. In the present paper, it is shown that for prediction of
the loss of contact as described above it is necessary to include the normal extension effect
and it is suflicient to use constrained thecory N which isolates this effect. This result is
intimately related to the Poisson effect and can be explained physically along the following
lines. Thus, with reference to Fig. 1, we note that in a contact region the normal fibers (in
the x-dircction) near the bottom surface of the beam are compressed so axial fibers (in the
z-direction) arc extended due to the Poisson effect. Furthermore, since the top surface of
the beam is traction free, the resultant axial load vanishes and the axial fibers there are not
extended. It follows that this preferential extension of the axial fibers near the bottom
surtace of the beam (relative 1o its top surface) tends to create a curvature concave upward
in the contact region. As the moment is increased the location of the maximum contact
force per unit length in the positive hall (z > 0) of the beam moves away from the beam’s
center (2 = 0). Conscequently, the tendency to create a concave upward curvature in the
contact region is more significant near the location of the maximum contact force per unit
length than near the beam’s center, thereby causing the center of the beam to lose contact.

After some preliminary background information, the basic equations and constitutive
equations of the general lincarized theory G. along with the main features of the linear
constrained theories BE, N and T, are summarized in Section 2. A detailed solution of the
boundary-value problem described earlier in this section is obtained with the use of theory
G in Section 3. The corresponding solutions with the use of the three constrained theories
BE, N and T can be obtained similarly and are not recorded here. However, the results
from all four solutions are discussed in Section 4 as illustrated also in Figs 2(a), (b) and 3.
Basically, it is observed in Section 4 that the main physics of the contuct problem are
contained in theory N, which excludes the effect of transverse shear deformation but
includes normal extension. Qualitatively, it predicts the same results as general theory G.
In particular, it is found that the center of the beam loses contact for values of M > M**
and the contact force between the beam and the rigid surface is continuous at the edges
of the contact region, whereas theories BE and T do not correctly predict these features.

2. GENERAL BACKGROUND AND BASIC EQUATIONS

In this scction we first provide bricf background information on the non-lincar theory
of a Cosserat (or directed) curve with two directors and then summarize the main aspects
of the linearized theory for a straight beam, along with lincarized versions of the constrained
theories mentioned in Section | (Naghdi and Rubin, 1984). A detailed discussion of the
main kinematics and basic ficld equations of the theory of a Cosserat (or directed) curve

t The coordinates (x. y. 2) of the present paper correspond to (=, — v, x) in Essenburg (1975).
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Fig. 2(a). Plots of the normalized location £, = L, L of the outer edge of the contact region as a

function of the normalized moment A7 predicted by the general theory (G). by the theory (N) which

accounts for normal extensional deformation, bv the Timoshenko beam theory (T) and by the

Bernoutli Euler beam theory (BE). Note that Fn: 2(a) represents an enkirgement of a portion of
Fig. 2(b).
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Fig. 2(b). Plots of the normalized locations £, = £, 'L of the outer edge of the contact region and
L. = L./L of the inner edge of the contact region as functions of the normalized moment A7
predicted by all four theories (G, N, T and BE).

# which also models the deformation (and motion) of a lincar clastic, homogencous,
isotropic straight bcam may be found in Green e af. (1974a,b) and Naghdi (1982). There
arc some changes in the notations used in these papers and those of carlier ones on the
subject. However, throughout this paper, we consistently usc the notation of Naghdi (1982)
and Naghdi and Rubin (1984) to which frequent references are made for concisencss.

Let the particles (material points) of the material curve ¥ of # be identified by
convected coordinate &; and, in the current configuration at time ¢, denote by r and d,
(x = 1,2), respectively, the position vector of the material point and the directors atr. The
directors d, and d, represent the material fibers which in the reference configuration are
parallel to the directions e, and e; of the orthonormal basis e, introduced in Section 1. For
convenience, we introduce the notations
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Fig. 3. Plots of §,/(M/L*) representing the normalized contact force 4, per unit length over the
contact region for three different values of the normalized moment M as predicted by the three

theories (G. N and T). The corresponding prediction by theory BE is not shown because the
Bernoulli-Euler beam theory cannot predict this type of information.

d;=(d,.dy). dy==; )

and note that eqn (1), represents the tangent vector to curve 4 in the current configuration.
Further, the three vectors d, are assumed to be lincarly independent, i.e. [d,d.d,] > 0.
Preparatory to the linearization of the various equations in the non-lincar theory, let

u and &, denote, respectively, the relative displacement of the material point & and the
relative director displacements at r defined by

r=R+u, d =D,+9, (2
wheret

u=u(n,  §=800 3
and where R, D, are the reference values of r, d, specified by

R=¢e;, D =e¢. 4)

All vector and tensor entities in this paper will be consistently referred to the base vectors
D, = (e, e,, e;). Thus, for example

w=ue. & =5 )

where the usual summation convention over repeated indices is employed. Using the
notation of Naghdi and Rubin (1984), the linearized strain measures y;;, k., are defined here
by

t We use the symbol &, (rather than J, without an overbar) to avoid possible confusion between the components
3, of & (see eqn (5)) with the usual notation for Kronecker delta representing the components of the unit
tensor.
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We also note that in the context of the constrained theories of rods (Nuaghdi and Rubin,
1984), the componentst n, of the contact force n per unit length of the curve &, the
components k,; of the instrinsic director force k, per unit length of #. and the components
m,, of the contact force m, per unit length of #. are determined to within additive constraint
response such that

(n.k,.m) = (a.K,.m,)+ (0. k,.m,). (7)

In eqn (7). the parts (i.k,.m,) require constitutive equations and the other parts
(i.k,.m,) representing the constraint responses are workless and are determined by the
equations of motion and the boundary conditions.

At this point, we may recall that the theory of a Cosserat curve can be brought into a
one-to-one correspondence with that derived by approximation from the three-dimensional
theory if the position vector r* and the relative displacement u* (in the three-dimensional
theory) of an arbitrary point in the beam are linear functions of the convected coordinates
" defining the cross section of the beam such that (Green et al., 1974a)

=05

~—

=l N+0d,(S.0) (8)
with
u* = u*((. 5 0) = u(E O +09,(E, ). 9)
The ranges of the coordinates * defimng the rectangular cross section of the beam are
[0V < h/2, 5] < w2 (10)

where 6' = h/2 defines the top surface and 0' = —//2 defines the bottom surfuce of the
beam (Fig. 1). It follows from eqns (9) and (10) that the displacements 4 and @ on the
centerlines of the top and bottom surfaces, respectively, are given by

. h - - /I <
OG=u+{, 0, u=u-—{, 0. (I

As in the paper of Green er «f. (1974a), the components of (n, k,,m,) may be identified
with definitions of corresponding resultants which occur in the derivation of equations of
equilibrium (or motion) from the three-dimensional equations; and, similarly, most of the
constitutive coefficients in the direct approach may also be identified with the help of results
obtained from the three-dimensional theory (Green er al., 1974a,b; Naghdi, 1982).

In what follows, we directly quote from the results for the lincarized theory of straight
beams of isotropic materials from Green et af. (1974b), apart from some minor notational
changes. In this connection, we note that (i) now 4 in Green ef al. (1974a.b) and in Naghdi
and Rubin (1984) is equal to the mass density per unit length of the beam, (ii) the strain
measure 7, in eqn (7.38) of Green er al. (1974b) is twice that defined by eqn (6), of the
present paper, and (iii) the constant constitutive cocflicients ...,k ; in Green et al.
(1974b) are denoted in the present paper by x,,...,a,; to avoid possible confusion which
may arise from the slight change in the definition of strains.

It should be clear from the Statement of the problem in Section 1 (sec also Fig. 1) that
the type of deformation under consideration and characterized by cqns (5) must ensure

tSince in the lincar theory all tensor quantities may be referred to the constant orthonormal base vectors
D, = e,. therc is no need to distinguish hetween covariant and contravariant components.
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that: (i) the centerline % must always remain in the e ,—¢; plane, (ii) all cross-sectional fibers
which were originally in the e,~e, plane must remain in the e,~e; plane, and (iii) cross-
sectional fibers originally parallel to the e,-direction remain parallel to the e,-direction but
are allowed to extend. In order to reflect these properties, we impose the following restric-
tions on the relative displacement u and relative director displacements &, :

ue;,=0, 8,re,=0 (12a,b)
Sz'el =0, 5:'93 = 0. (IZC,d)

Demanded by the symmetry of the problem defined in Section 1, the relevant constitutive
equations for the isotropic beam under discussion are

Ay = (135. (Hogbar + “’ai"’) (13a)
£ = (a.J.,+a,5n+°"‘ai"’) (13b)
ki = (a,é’., +a,84+ %‘Bﬂ) (13¢c)
fn=aa(5n+‘3?) (13d)
i n““’;‘zﬂ+“”0‘?‘)’“ (13¢)
tys = “"a‘z‘;" + ““f“ (130)
iy = 216050 (13g)

where in eqns (13) and in the remainder of the paper we have replaced the variable & by =
of rectangular Cartesian coordinates introduced in Section 1.

Recalling from eqns (2.22) of Green er al. (1974a) that the assigned fields f and I*
include contributions of both the three-dimensional body force and surface tractions on
the lateral surfaces of the beam, then using eqns (12) and (13) and in the absence of the
effect of the body force, the relevant equations of equilibrium (see eqns (2.7)-(2.9) of Naghdi
and Rubin (1984)) for our present purpose may be displayed as

%’-‘-‘ +4i+d, =0 (14a)
E:%’--&-fi;‘*"‘?s =0 (140)
5'(;::., + g)(tiu“in)*fn‘”/‘:ll =0 (1)
(?'(;;;1 —hyr—Fy =0 (14d)

c /
e +(§)(‘33-‘?3)“£a3—fn =0 (140)
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im,, L A
no=— 4 (5G4, (14f)

In the above equations of equilibrium for beams. eqns (14a) and (14b) are consequences of
linear momentum, eqns {(14¢)-(14e) are consequences of director momentum and eqn (14f)
arises from the moment of momentum. Also, ¢, and ¢, are components of the applied force
per unit length at the top surface (x = #/2) of the beam, while §, and §, are the components
of the applied force per unit length at the bottom surface (x = —h 2) of the beam. Depend-
ing on whether or not constraints are imposed on the directors we can discuss four types
of theories: we refer to these as the general theory (G). the Bernoulli-Euler theory (BE),
the normal extensional theory (N). and the Timoshenko beam theory (T). A feature which
is common to all four theories is that the component n, is determined by eqgn (14f) and
does not require a constitutive equation.t Moreover, the constraint responses 7, and 7t
vanish (for details see Naghdi and Rubin (1984)) so that

ny =n,, My = Ky, (15)

Before proceeding further, it s desirable to indicate briefly the structure of these
theories which may be described as follows.

General theory (G). For the general theory, there are no constraiats and in the
absence of constraint responses, the deformation ficlds in terms of the components
(4. 1y, 8,1, 8,+.3,7) are determined by all five differential equations, eqns (14a)-(14¢) with
ki, =k, =k, =0, whilc eqn (14f) determines n, (as was noted above).

Constrained theory (BE). This theory excludes both normal extensional and transverse
shear deformation by imposing the kinematical constraints

=0, 722 =0, 7= 0. (16)

The relevant system of governing equations in this case simplifies considerably : the defor-
mation fields (u,, u,) are determined by the two differential equations, eqns (14a) and (14b),
while the remaining three equations, eqns (14¢)~(14¢) determine the constraint responses
f)l»E;‘l‘EI}‘

Constrained theory (N). This theory includes normal extensional deformation, but
excludes transverse shear deformation by imposing only constraint (16);. The deformation
fields (.1, 8,,,522) in this case are determined by the four differential equations, egns
(14a)-(14d) with £,, = £, = 0, while eqn (Ide¢) may be regarded as an equation for the
determination of the constraint response £ ;.

Constrained theory (T). This theory includes the effect of transverse shear deformation
but excludes normal extension by imposing constraints (16),, The deformation fields
(,, u3, 8,3) in this case are determined by the three differential equations, eqns (14a), (14b)
and (14¢) with £, = 0, while eqns (14¢) and (14d) determine the constraint responses L,
and £,,.

Most of the constitutive coefficicnts which occur in the direct formulation of the theory
of elastic rods have already been identified in the paper of Green er al. (1974b). Apart from
some notational changes and a slight change in the definition for 7, mentioned earlier, these
coetficients are given by

Ehw(l—v)
=+ = A S 17
o€ x, X3 (1_*_1.)(]__2‘,) ( )
Ay = Ay =y = (’1\%"175 (18)

t This is consistent with a general procedure in continuum mechanies according to which moment of momentum
equation is regarded to be satisfied identically by all ficld quantities in the theory.
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and
Eh*w 5
—17—, Xe ==—6-th (19)

X =

where E is Young's modulus of elasticity, v is Poisson’s ratio and u = E/2(1 +v) is the shear
modulus. The coefficients in eqns (17) and (18) were identified in Green et al. (1974b) by
comparison with exact solutions in the three-dimensional theory for simple extensional
deformation of a rod in the €,- and e;-directions, while eqn (19), was identified by com-
parison with the exact solution for pure bending of a beam. The coefficient x, is associated
with the effect of transverse shear and its approximate value, as recorded in eqn (19).. is
commonly used in the literature for static solutions which include the effect of transverse
shear deformation. The remaining coefficients in the constitutive equations, eqns (13),
namely 2,4, ;. 2,7 Which occur in eqns (13e) and (13f), have not been identified so far by
comparison from exact solutions in the three-dimensional theory. However, since the main
physics of the contact problem is retained even in the absence of these coefficients, we set

o= =u;=0 (20)

which also leads to a considerable simplification of the system of equations governing the
contact problem under discussion. It is of interest to note that specification (20) is
tantamount to a special constitutive assumption which renders the strain energy density
function independent of kinematical quantities k,, and «;,.

Specifications (17)-(20) are valid for constrained theory N which includes normal
extensional deformation. However, for constrained theories BE and T which exclude normal
extensional deformation we must specity o, by

oy, = Ehw Qn

in order to obtain the correct results for simple tension in the ¢j-direction. In this regard
we may note that when the lateral surfaces of the beam are traction free, the flexural and
extensional cquations are decoupled. However, when the contact forees (e.g. ¢, 43) are
present, the flexural and extensional equations are coupled (see eqn (14a)). The value (21)
is included for completeness even though it is not needed for the solutions presented here
because the flexural and extensional equations of theories BE and T remain uncoupled.
Recalling the Statement of the problemin Section 1, for the contact under consideration,
the top surface of the beam is free of contact force (¢, = ¢; = 0), the contact surface is
smooth (4, = 0) and the ends z = + L are allowed to extend freely in the e;-direction since
ny = 0. With the help of eqns (13) and (20), the governing equations, eqns (14), reduce to

d*s
g, = _“”’d_l '3 (22a)
. . oy duy
A0y +2y022+ -— = constant (22b)
h\ 2,6 475 . . dydu
kv = (:,) ““Ifa‘“;r“l—s - <1|0u a8+ (220)
- d
E:: = e (aﬁ” +12()22+ % f‘}) (22d)
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2.1. Solution procedure

The analysis of the contact problem with the use of general theory G naturally leads
to the consideration of three separate regions: (i) the free region I, (ii) the contact region
I1. and (iii) the free region III (Fig. 1). Thus, we first consider the general solutions in each
of these three regions and then impose appropriate boundary conditions at the end z = L,
symmetry conditions at the center, and matching conditions at the boundaries = = L, and
L.

Specifically, the boundary conditions at theend - = L are

w, (L)Y =0, n{(L)=0, ma(ly=-M (23a-<)

and the symmetry conditions are

(D = (=2 w(0)=0,  F() = =35(~2) (24a-¢)
Jll(:) = (;n('“:). 53:(3) = 5::(":)' (24d.e)
Furthermore, the matching conditions at - = L, arc

“!(Ll‘)=“!(£; ) u Ly =u (L) 5:;\(L|')=5;1{L:) (25a-¢)

oLy )y =8, (L)), L)y =3d,(L)) {25d.¢)
(L) =n (L) (L) = my(lLy) (250g)
"l]\([.q )zl”l|(l4: ). (71([‘] )=(il(l‘:)=0 (?..Sh,i)
l?;(l,] )=l‘i‘(14')= -l (25})
and the matching conditions at = = L, arc

wi(Ly) = (LE), (L) =uy(LY).  Si(L:)=38,(LY)  (26a-<)

Sy(Lyy =8 (L]). Fy(Ly) = 0,(LT) (26d,e)
n(Ly)y=n(L}), ny{Ls)=ny(L7) (26f.g)
my(Li) = m(LY), gi(Ly)=4q(Li)=0 (26h,1)
G(Ly)y=a,(Ly) = —¢L. (26§)

From the constitutive equations, eqns (13), conditions (15), the equations of equi-
librium (22). as well as the conditions £,, = 0, it follows that the kinematical quantities

du, duey -

. d" N iy, d" . (}H, 53: (2?3"‘{)

- ds N 475, d;;)'” .

I N (27g)
are continuous at the boundaries = = L, and L.. Further, it follows from (11) and (27) that

the kinematics of the top and bottom surfaces of the beam satisfy the conditions thatt

+ These conditions differ from those used by Essenburg (1975). His matching conditions arc not sufficient to
ensure the continuity of the displacement at the top surface of the beam.
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N
. i ~d'f} (28a¢)
G, %_3 (28d-f)

are also continuous at the boundaries - = L, and L.. It is of interest to note that the
quantities di,/d: and di7,/d= are not necessarily continuous because the quantities d§, /dz
and dd,,/dz are not necessarily continuous. However, if we were to consider a theory in
which 2,4, 2,,. 2,7 were not assumed to vanish, then we would require continuity of m,,
and m;,, at the boundaries - = L, and L.. This would then require continuity of dJ,,/dz,
dd,,/dz, di,/dz- and di,/dz. but this is not considered here.

It is fairly straightforward to show that constrained theory N satisfies the same con-
tinuity requirements as general theory G. whereas constrained theories T and BE do not.
More specifically, d*3,,/d=" (or ¢,) is not continuous for constrained theory T and both
d’$,,/dz* and d°5,,/dz? (or ¢, and /) are not continuous for constrained theory BE.

3. SOLUTION—GENERAL THEORY (G)

In this section we first obtain general solutions in the three regions, regions I-111, and
then develop the solution of the contact problem for the three cases : no contact (M < M*);
contact with one free region (M* < M < M**); and contact with two free regions
(M > M**).

For the general theory there are no constraints and this is cquivalent to sctting

Knw=kn=£k,=0 (29)

Also, since the ends of the beam are free of axial force (1, = 0). and by eqns (25g) and
(26g) the axial force must be continuous, we conclude thut the constant in eqn (22b) vanishes

so that
du_‘ Ay \ « Ay | «
e TR — ], - = 33,
d: (1,\)( . <“3)0" G0

Further, using eqns (29) and (30), eqns (22a) and (22¢)-(22¢) may be rewritten in the forms

522 _ _(aﬂr-&:«‘:g)ov“ (31a)
Asly — 0y

d*s,, (Za .

RV Ll e

_ 20\ .

D=\ 0y Blo)

a,, d°5 . d

'°d.;,:_l_’. -, (0,,+ a"_') =0 (31d)

where the constant « in eqns (31b) and (31¢) is dcfined by

« = (2125 —2) (@20 — 25) — (2327 —240)°
o3(2,%y —a5)

(32)

Free region 1. For free region I the contact force §, vanishes and the solution of eqns
(30) and (31) subject to boundary conditions (23) and matching condition (25j) yields
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U = —<§%)(L~3)($—L;)~%—g—(%)(L~:)(:»Ll}(2L—Lt—:) {33a)
Uy = ds, O, = 0. 012=0 {33b-d)
iy = — (L{%}} + (ﬁi (L+L,—2:)+a, [(:—Ll)(ﬂ-L, —20)+ Z(*L_:ill + 320]
(33e)

ny = 2x6d,. ny =0, G, =0 (33f-h)
myy= —M-—-2a,2,.(L-2) (330)

where @, and a, are constants of integration.
Contact region 1. For contact region [1 the normal displacement at the contact surface
is (Fig. D)

hy .
17| =“l*<-)“)()ll = “"SL (34)
Differentiating eqn (31b) with respect to - and using eqns (31d) and (34) to eliminate §,,
and du,/d:- we deduce the equation
d.‘(;l 1 5 d:{v

) -
1 d_,_if +a*8,, =0 (35)

where constunts ¢ and b are defined through

dx 2x

1 b =
hx,”

4

(36a.b)

g,
Using standurd techniques a general solution of egn (35) may be written in the form

8,y = b, cosh B (z—L,) cosh ffy(z— L)+ b, sinh ff,(z—=L,) sin f.(z=L,)
+bycosh fli{(c—Ly)sin fla(z—= L)) +by sinh (= L,y cos fl.(z— L) (37)

where by, b,, by, b, are constants of integration to be determined and constants ff, and ff,
are given by

iy =acos 0, fBs=uasinl (38ua.b)

| (at =bH':
0= <2> tan ! [ s . {38¢)

The remaining part of the solution for region I in terms of egns (37) and (22) may be
summarized as follows:

"\ .
uy = —gL+ (;)o” (39a)
[d35,,  d3,,(Ly)
“"=”°‘['d:;‘“ I ]+h5 (39b)

. A d3s
Oy = <11;(,> m o (39¢)

22 / 4}
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5:2 = - ('1‘3—17——1‘8?—9)511 (39d)
Xy —qdy
d
= ansd:2 13 ny =0 (39,0
22\ . as do
9= "(7{‘)%1- my; = 10 B = (39g,h)
. h“ls) 2y (2205 — %5) — %9 (2327 — 25%g) .
r ( 2 [ a3 (%y23 —a3) (390

where §,; is given by eqn (37) and b5 in eqn (39b) is another constant of integration.
Free region 1. For free region III the contact force ¢, vanishes and a solution of eqns
(30) and (31) subject to symmetry conditions (24) and matching condition (25j) yields

u, = Me(Li-)—el, uy = (40a,b)
§ii =0, 52 =0, Sy = c2z (40c-¢)
n =0, ny =0, g, = (40f-h)
My = 0,,C (401)

where ¢, is a constant of integration.

Solution —no contact. When there is no contact, the contact force §, vanishes and a
solution of eqns (30) and (31) subject to boundary conditions (23) and symmetry conditions
(24) results in

M __
U = — (,) - )(L.—:.)v iy = 0 (4la'b)
<oye

. - . M
()” =0, 1)33=0. ()|}= —'(*—'): (4|C—e)

e
n, =0, ny =0, g, =0 (41f<h)
m;; = -M. (4“)
We observe that contact will first occur at the center of the beam when #,(0) = —¢L and

M = M* with M* given by

2x,t

* _
M_L

42)

Solution (41) corresponds to that for pure bending of a4 beam. With the help of kinematical
expressions (6), (41a), and (41¢), it can be readily demonstrated that the effect of transverse
shear is entircly absent in this case, consistent with the known exact three-dimensional
solution.

Solution—contact with one free region. The solution is characterized by eqns (33) in
region I and eqns (37)-(39) in region I1. Since there is only one free region we set

Ly=0 (43)

and impose symmetry condition (24c) on the solution in region II to deduce that
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b[ = bz =0. (44)

The remaining constants are determined by symmetry condition (24b) and matching con-
ditions (25b)-(25d). (25f) and (25h) and are given by

a, = Alb}. a; = *i[dhousl‘l) - d..o”-(())] (458.b)

- -—

by = — B, (—) by = Biby,  bo=0 (45¢c—)

. L L—L
M =[7 :H:( 5 z)-i-<1:)(cosh B,L, sin §,L,+ B, sinh §,L, cos 8,1,

M= - (46a)

A= (DUBi =B =28,8,8,] cosh B, L, sin §,L,
+ (D28, fa+ Bu(Bi=p3)] sinh B L, cos fal, (46b)
By =[2A(L-L)+(Bp,+ ;) cosh L, cos },L,
+(ff, =B, f8,) sinh i, L, sin §.L] ' (46¢)

_ (BI=3Bif) cosh L, cos ByL, —(B1 =3P, p3) sinh B, L, sin f,L,
T (BYZ3BTRL) sinh fL Ly sin oLy + () — 34, i) cosh L, cos oL,

(46d)

For a given value of M larger than M*, egn (45f) may be solved numerically to determine
the smallest positive value of L, for which the contact force 4, remains positive in region
I1. When M reaches the critical values M **, then the contact force ¢, vanishes at the center
= = 0, the beam loses contact there and we must include region 11 in the analysis.

Solution-—contact with two free regions. The solution is characterized by eqns (33) in
region [, eqns (37)}-(39) in region 11, and eqns (40) in region 11, For this problem matching

conditions (26b)-(26d), (26f) and (26h) at = = L, yield
b; = B]h_}, bz = sz;, b4 = B.;b] (473““:)
hs = 0. Cr = (B,gﬂ{ +ﬂ:)b; (47(1.?)

where constants B, 8, and B, are given by

(fi—-
By = (B.fii +B2)Lx. B, ={ /-ﬁ ﬁ!] )] B, (48a,b)

(Bi=3B182) (480

Be=

Using these results, matching conditions (25b)-(25d). (25f) and (25h) at = = L, yield
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d*d (L 38,5(L,
a, = Ab;. a5=-5[ (;j( ) _d ‘ig J] (49a.b)

Xis

_ L B
M= [m][(f)(Bl cosh ﬁl(lq‘—Lz) Cos ﬂz(L.""L:)

+ B, sinh B (L, —L,)sin (L, —L.y+cosh B (L, —L,}sin (L, —~L,)

b T8 2 2 - _ -1
+ B, sinh (L, —L.) cos Bo(L,—L;)—A, {'({‘ 3[“} + ':”’}) + ("‘,LL‘)} (49d)
6 -

[(ﬁ{":‘ﬁxﬁg)‘*‘gdﬁ; '"Mﬁﬁ:)] sinh B,(L,—L;) sin B(L, ‘Lz)+[31(ﬁ§—3ﬁi3:)
+ B:(B; =3B, B3)] cosh B\(L,—Ly) sin B3(L,~L,)+[B,(Bi—3,83)
—B:(ﬁg—:‘ﬂfﬁz)l sinh B (L —~L;) cos f(L —L,) =0 (49%)

where M is given by eqn (46a) and constants 4, and B8, are given by

Ay = (BB =B +28:p p:] cosh (L —L;) cos B(L,—Ly)
+(D[B:(Fi~ BN =2B, B\ ] sinh f(Ly~Ly) sin Bo(L, — L)
+ (DU~ B =284, Bfcosh (L, — L)) sin oLy —L2)
+(D[BAFT =B +2 B sinh f(L, — L) cos fa(Ly— L) (50a)
By =RA(L~L)+ (B + ) cosh B(Ly—Ly) cos (L, —L,)
+(f}, = B, fy)sinh (L, —Ly)sin (L, —L;)
+(B:fi, — B\ 1) cosh i (Ly— L) sin (L, — L)
+ (B, B+ B:J};) sinh B (L, —Ly)cos Ba(L,—Ly)]™". (50b)
For a given value of M larger than M**, we guess values for L, and L, and iterate
until eqns (49d) and (49¢) are satisfied with §, being nonnegative in region 11, Within the
context of the present solution the value of M** can be evaluated by specifying L, = 0 and
using egns (47), (48) and (49¢) to deduce that
L,=0, by =by =0, B =8,=0 (5la—c)
sinh g, L, sin §,L, = 0. (51d)

The smallest non-trivial value of L, which satisfies cqn (51d) is

L= (52)

St

It then follows from eqns (46a), (49d). (50) and (51) that the value of M** becomes

e o ars| L (L-L) (B . AL-L,) | 22,6\
M = A [Z(L—Ll)][ 2L —(z> (B_; Slnh ﬁ|L|+A|{'——*_-—3 -{v-“-—-—-‘a6 })]
(53)

where constants A, and B; are given by

SAS 2%:3-D
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—(D[B(Bi—p3)+2B, 8] sinh B, L, (54a)
[2A(L—L)—(B,B,+B)cosh B,L,]". (54b)

R
It

8,
and where B, is given by eqn (48c¢).

4. DISCUSSION

In this section we discuss the predicted numerical results for a beam the geometry and
Poisson’s ratio of which are specified by

b ol =0.1
L~—-.. L—.. v

Il
bt
)
Rl

(55a—)

With the use of eqns (55). the solutions of general theory (G). the Bernoulli-Euler theory
(BE), the normal extensional theory (N), and the Timoshenko beam theory (T) were
obtained and the results are presented graphically in Figs 2 and 3. No values are specified
for the length L. the height L or Young's modulus E because all lengths are normalized
with respect to L and the moment is normalized with respect to the value M* (the same
value predicted by all theories). Figure 2(a) represents a plot of the normalized length
L, = L, L as a function of the normalized moment M for the initial stages of contact. In
particular, notice that theory N exhibits the correct physics at the initial stages of contact
because it coincides with general theory G near M = 1. Also, notice from Fig. 2(a) that
theory T predicts that contact begins at M = 1 but has the incorrect slope there. Further-
more, theory BE predicts discontinuous behavior with no solution existing for M between
the values 87 = 1 at which contact initiates and M = 3 when the contact region begins to
spread. Figure 2(b) represents a plot of the normalized lengths £, and L, = L,y/L for a
larger range of normalized moment M. Again, we observe from Fig. 2(b) that thcory N
exhibits the correct physics by predicting a non-zero value of L, whercas theories T and
BE predict a zcro value for L,. Furthermore, we observe that for values of M larger than
about three, the values of £, predicted by theories N and T are close to those predicted by
general theory G but the predictions by theory BE have considerable error.

Figure 3 shows the distribution of the contact force ¢, (normalized by M/L?) for three
values of moment M. The corresponding result for theory BE is not included in this figure
because it cannot predict the contact force. For M = 3 all three theories (G, N, T) predict
a single free region ; for M = 5 both theories G and T predict a single free region, whereas
theory N predicts two free regions, and for A7 = 10 both theories G and N predict two free
regions, whereas theory T predicts a single contact region. For all cases theory T significantly
overestimates the maximum value of the contact force and incorrectly predicts that this
maximum occurs at the edge of the contact region where physically the contact force should
vanish. For the smallest value of M in Fig. 3, ncither theory N which includes normal
extension nor theory T which includes the cffect of transverse shear deformation accurately
predicts the distribution of the contact force. However, for the larger values of M it
becomes clear that normal extensional theory N is superior to theory T. Morcover, for
AT = 10, the effect of normal extension is significant near the outer edge (z = L) of the
contact region, while the effect of transverse shear deformation is significant near the inner
edge of the contact region (= = L),
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